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Motivation
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Example

Fund µ(%) σ(%) max. DD(%) T (yrs)

Π1 25 10 −5 1

Π2 30 10 −71
2 1.5

Π3 25 12.5 −81
3 2

Calmar Ratio =
Return over [0, T ]

max. DD over [0, T ]

Sterling Ratio =
Return over [0, T ]

max. DD over [0, T ] − 10%

Which fund is best?
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The Complication

• µ and σ are annualized. The max. drawdown is computed over a

given time period.

• Problem: funds have statistics over different length time intervals.

How do we annualize MDD?

Why?
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Common Practice

Compare funds over T = 3 yrs.

Artificial:

– Wasteful of useful data.

– 3 years data may not be available.

– Easily available data does not generally quote the MDD for 3 years.

4



√
T -Rule for Sharpe Ratio

Sharpe Ratio =
µ(annualized)

σ(annualized)

µτ

στ

}

over time periods of size τ

µ(annualized) = µτ · 1
τ

σ(annualized) = στ ·
√

1

τ

Sharpe Ratio =
µτ

στ
√

τ

5



Similar scaling laws for Sterling-type Ratios?

Part I:
Analysis of the Maximum Drawdown.

Part II:
Application to Scaling Laws.
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Part I:

Analysis of Maximum Drawdown
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The Drawdown (DD)

The DD (current loss) is the loss from the peak to the current value.

X(t) is the cumulative return curve.

DD(T)

X(t)

T
t

DD(T) = sup
s∈[0,T ]

X(s) − X(T)
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Distribution of DD(T )

• Since DD(T) = max over [0, T ]−X(T), the full distribution of DD(T)

can be obtained from the joint distribution of the max and the close.

• Joint distribution can be obtained in closed form for various stochastic

processes (see for example [Karatzas and Shreve, 1997])
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The Maximum Drawdown (MDD)

The MDD is the maximum loss incurred from a peak to a bottom.

t

X(t)

MDD(T)

T

MDD(T) = sup
t∈[0,T ]

DD(t)

– DD is an extremum.

– MDD is an extremum of an extremum.
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Sampling of Prior Work

– Previous work on the the MDD is mostly empirical or Monte-Carlo.

• [Acar and James; 1997]

• [Sornette; 2002]

• [Burghardt, Duncan and Liu; 2003]

• [Harding, Nakou and Nejjar; 2003]

• [Chekhlov, Uryasev and Zabarankin; 2003]

– The only analytical approach is for a Brownian motion with zero drift,

[Douady, Shiryaev and Yor; 2000].
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Setup

X(t) is an (arithmetic) Brownian motion:

dX(t) = µdt + σdW (t) 0 ≤ t ≤ T

µ = average return per unit time (drift)

σ = std. dev. of the returns per unit time (volatility)

dW (t) = Wiener increment (shocks)

Note: If the fund S(t) follows a geometric Brownian motion, then the

cumulative return sequence follows a Brownian motion.

We would like to study MDD(µ, σ, T).
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DD(t) is a Reflected Brownian Motion

Drawdown at time t is a stochastic process.

X(t)

t t + ∆

DD(t)

t t + ∆

DD(t) is reflecting at 0, i.e., DD(t) is a reflected Brownian motion.

dDD(t) =







−dX(t) DD(t) > 0

max
{

0,−dX(t)
}

DD(t) = 0.
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Maximum of a Reflected Brownian Motion

MDD(T) = sup
t∈[0,T ]

DD(t)

Reflecting Barrier

Absorbing Barrierh

t
T

DD(t) τ=stopping time

fτ(t, h|µ, σ)=stopping time density

[Dominé; 1996]

GH(h|µ, σ, T) = P [MDD(µ, σ, T) ≥ h] =
T∫

0
dt fτ(t, h| − µ, σ)

[Magdon-Ismail, Atiya, Pratap and Abu-Mostafa; 2004]

14



Moments of GH

E[MDD(µ, σ, T)] =

∫ ∞

0
dh GH(h|µ, σ, T)
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Expected MDD(µ, σ, T )

Theorem: E[MDD(µ, σ, T)] =







2σ2

µ
Qp

(

µ2T
2σ2

)

µ > 0

√
π
2σ

√
T µ = 0

2σ2

µ
Qn

(

µ2T
2σ2

)

µ < 0

Qp and Qn are “universal” functions.

– Only need to be computed once!
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The Universal Qp and Qn

Bad news: Qp and Qn are integral series:

Qp(x) =

∞∫

0

du







e−u

∞∑

n=1

sin3(θn)

(

1 − e
− x

cos2(θn)

)

θn − cos(θn)sin(θn)
+ e

− u

tanh(u)sinh(u)

(

1 − e
− x

cosh2(u)

)







θn are positive eigen solutions of tan(θn) = θn
u
.

Qn(x) = −
∞∫

0

du eu
∞∑

n=1

sin3(θn)

(

1−e
− x

cos2(θn)

)

θn−cos(θn)sin(θn)

θn are positive eigen solutions of tan(θn) = −θn
u
.

Good news: Only have to be computed once.
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More Good News: Asymptotic Behavior

Most trading desks are interested in the long term.

Theorem:

E[MDD]
T→∞−→







σ2

µ

(

0.63519 + 1
2 logT + log µ

σ

)

µ > 0

√
π
2σ

√
T µ = 0

µT + σ2

µ
µ < 0

Phase Transitions: Three different types of behavior:

logT,
√

T , T

depending on the regime of µ.

18



Behavior of QMDD(x)
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Comparison of Q
MDD

(x) for Different µ

x

Q
(x

)

µ<0

µ=0

µ>0

http://www.cs.rpi.edu/∼magdon/data/Qfunctions.html
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Some Useful Statistics

E[MDD]
σ

Expected maximum drawdown per unit volatility

Shrp = µ
σ

Sharpe ratio of expected performance

Clmr = µT
E[MDD]

Calmar ratio of expected performance

From now on, µ > 0.
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MDD vs. Shrp
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D
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)/
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E[MDD]

σ
=

2Qp

(
T
2Shrp2

)

Shrp

T→∞−→ 0.63519 + 0.5 logT + log Shrp

Shrp
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Calmar vs. Sharpe
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Clmr =
T
2Shrp2
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(
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)
T→∞−→ TShrp2

0.63519 + 0.5 logT + log Shrp

Note: Clmr is monotonic in Shrp.
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Part II:

Scaling Laws
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Recap

Calmar(T) =
Return over [0, T ]

MDD over [0, T ]
≈ µT

E[MDD]
= Clmr

Given two funds,

Π1 : µ1, σ1, T1, MDD1, Clmr1 = µ1T1
MDD1

.

Π2 : µ2, σ2, T2, MDD2, Clmr2 = µ2T2
MDD2

.

How to compare Clmr1 and Clmr2?
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Normalized Calmar Ratio I

Normalize the ratios to a reference time τ , for example τ = 1 yr.

We know how to scale return over [0, T1],

µ1T1 −→ µ1τ = µ1T1 · τ

T1

We can scale MDD([0, T1]) → MDD([0, τ ]) using proportion,

E[MDD([0, τ ])]

E[MDD([0, T1])]
=

MDD([0, τ ])

MDD([0, T1])
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Normalized Calmar Ratio II

Calmar1(τ) =
return([0, τ ])

MDD([0, τ ])

=
µ1T1

MDD([0, T1])︸ ︷︷ ︸

Calmar1(T1)

· τ

T1
· E[MDD([0, T1])]

E[MDD([0, τ ])]
︸ ︷︷ ︸

γτ

Calmar1(τ) = γτ(T1, Shrp1)×Calmar1(T1),

γτ(T1, Shrp1) =

1
T1

Qp(
T1
2 Shrp21)

1
τ
Qp(

τ
2Shrp21)
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Example – Revisited

Fund µ(%) σ(%) max. DD(%) T (yrs) Calmar Calmar

Π1 25 10 −5 1 5 5

Π2 30 10 −71
2 1.5 6 4.41

Π3 25 12.5 −81
3 2 6 3.62

(normalized to τ = 1 yr.)

Π1 > Π2 > Π3
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τ-Relative Strength

Fix a reference time τ .

βτ(Π1|Π2) =
Calmar1(τ)

Calmar2(τ)
.

– Relative normalized Calmar ratio of Π1 with respect to Π2.

– May depend on τ .
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Relative Strength

Consider the long horizon, τ → ∞,

β(Π1|Π2) = lim
τ→∞βτ(Π1|Π2)

– The limit exists.

relative strength = β(Π1|Π2) =
Calmar1(T1)

Calmar2(T2)
×

1
T1

Qp(
T1
2 Shrp21)

1
T2

Qp(
T2
2 Shrp22)

Π1 � Π2 ⇐⇒ β(Π1|Π2) ≥ 1
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Example – Re-Revisited

Fund µ(%) σ(%) max. DD(%) T (yrs) β

Π1 25 10 −5 1 1.00

Π2 30 10 −71
2 1.5 0.97

Π3 25 12.5 −81
3 2 0.64

(relative strengths w.r.t Π1.)

Π1 > Π2 > Π3
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Properties of Relative Strength

Complete: β(Π1|Π2) = 1
β(Π2|Π1)

Π1 � Π2 or Π2 � Π1

Transitivity: β(Π1|Π3) = β(Π1|Π2)β(Π2|Π3)

Π1 � Π2 and Π2 � Π3 =⇒ Π1 � Π3

Independent of Reference instrument: β(Π1|Π2) =
β(Π1|Π3)
β(Π2|Π3)

β(Π1|Π3) ≥ β(Π2|Π3) =⇒ Π1 � Π2

i.e., the relative strength defines a total order.
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Real Data∗

Fund µ(%) σ(%) T(yrs) MDD Calmar E[MDD] Calmar β

S&P500 10.04 15.48 24.25 46.28 5.261 44.56 0.6104 1
FTSE100 7.01 16.66 19.83 48.52 2.865 55.54 0.4395 0.5003
NASDAQ 11.20 24.38 19.42 75.04 2.899 77.87 0.4402 0.5407

DCM 15.65 5.78 3.08 3.11 15.50 4.770 6.541 27.76
NLT 3.35 16.03 3.08 25.40 0.4062 31.35 0.2202 0.1331
OIC 17.19 4.52 1.16 0.42 47.48 2.493 42.31 212.0
TGF 8.48 9.83 4.58 8.11 4.789 15.84 1.752 3.589

DCM=Diamond Capital Management;
NLT=Non-Linear Technologies;
OIC=Olsen Investment Corporation;
TGF=Tradewinds Global Fund.

– Normalized Calmar ratio is to τ = 1 yr.

– Relative strength index β is computed w.r.t. S&P500.

∗International Advisory Services Group http://iasg.pertrac2000.com/mainframe.asp
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Discussion

1. Studied MDD for a Brownian motion.

– geometric Brownian?

2. We now have scaling laws for MDD and Sterling-type ratios.

3. Portfolio opt. to maximize Calmar?

Since Clmr is monotonic in Shrp, optimization of

Shrp implies optimization of Clmr.

Advertisement:

[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004]

[Magdon-Ismail, Atiya; 2004 submitted]

http://www.cs.rpi.edu/∼magdon

33



Thank You!

Advertisement:

[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004]

[Magdon-Ismail, Atiya; 2004 submitted]

http://www.cs.rpi.edu/∼magdon
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