An Analysis of the Maximum Drawdown Risk Measure

Malik Magdon-Ismail (RPI)

May 6, 2004.

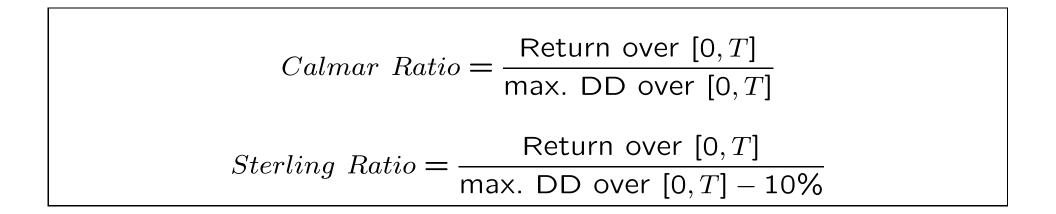
Joint work with:

Amir Atiya (Cairo University) Amrit Pratap(Caltech) Yaser Abu-Mostafa(Caltech)

Motivation

Example

Fund	μ (%)	$\sigma(\%)$	max. DD(%)	T (yrs)
Π1	25	10	-5	1
П2	30	10	$-7\frac{1}{2}$	1.5
П ₃	25	12.5	$-8\frac{\overline{1}}{\overline{3}}$	2



Which fund is best?

The Complication

- μ and σ are annualized. The max. drawdown is computed over a given time period.
- Problem: funds have statistics over different length time intervals.

How do we annualize *MDD*?

Why?

Common Practice

Compare funds over T = 3 yrs.

Artificial:

- Wasteful of useful data.
- 3 years data may not be available.
- Easily available data does not generally quote the MDD for 3 years.

$\sqrt{T}\text{-}\text{Rule}$ for Sharpe Ratio

Sharpe Ratio =
$$\frac{\mu(\text{annualized})}{\sigma(\text{annualized})}$$

$$\left. \begin{array}{c} \mu_{\tau} \\ \sigma_{\tau} \end{array} \right\} \text{over time periods of size } \tau$$

$$\mu(annualized) = \mu_{ au} \cdot rac{1}{ au}$$

 $\sigma(annualized) = \sigma_{ au} \cdot \sqrt{rac{1}{ au}}$

Sharpe Ratio =
$$\frac{\mu_{\tau}}{\sigma_{\tau}\sqrt{\tau}}$$

Similar scaling laws for Sterling-type Ratios?

Part I:

Analysis of the Maximum Drawdown.

Part II:

Application to Scaling Laws.

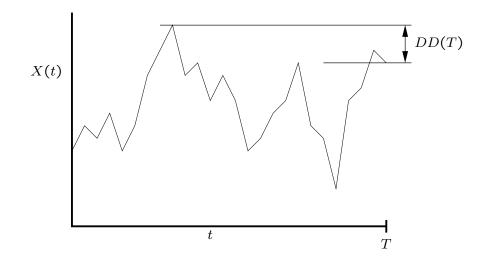
Part I:

Analysis of Maximum Drawdown

The Drawdown (DD)

The DD (current loss) is the loss from the peak to the current value.

X(t) is the cumulative return curve.



$$DD(T) = \sup_{s \in [0,T]} X(s) - X(T)$$

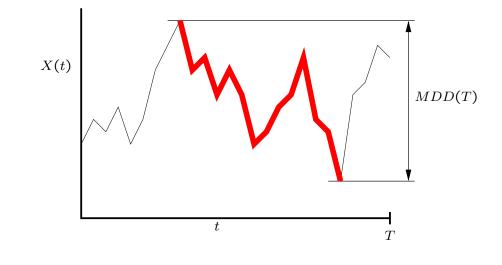
Distribution of DD(T)

• Since $DD(T) = \max$ over [0,T] - X(T), the full distribution of DD(T) can be obtained from the joint distribution of the max and the close.

• Joint distribution can be obtained in closed form for various stochastic processes (see for example [Karatzas and Shreve, 1997])

The Maximum Drawdown (MDD)

The MDD is the maximum loss incurred from a peak to a bottom.



MDD(T) =	= รเ	JD	DD(t)
	$t \in [$	0,T	

- -DD is an extremum.
- *MDD* is an extremum of an extremum.

Sampling of Prior Work

- Previous work on the the MDD is mostly empirical or Monte-Carlo.
 - [Acar and James; 1997]
 - [Sornette; 2002]
 - [Burghardt, Duncan and Liu; 2003]
 - [Harding, Nakou and Nejjar; 2003]
 - [Chekhlov, Uryasev and Zabarankin; 2003]

The only analytical approach is for a Brownian motion with zero drift,
 [Douady, Shiryaev and Yor; 2000].

Setup

X(t) is an (arithmetic) Brownian motion:

 $dX(t) = \mu dt + \sigma dW(t) \qquad \quad 0 \leq t \leq T$

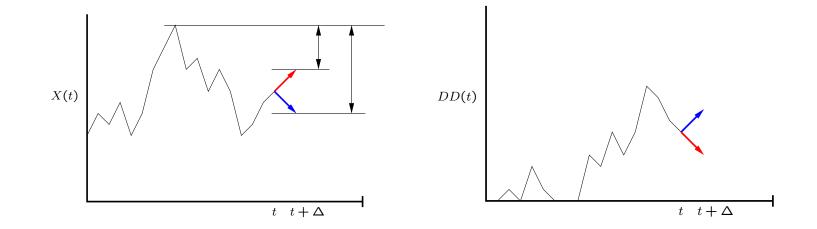
 $\mu =$ average return per unit time(drift) $\sigma =$ std. dev. of the returns per unit time(volatility)dW(t) = Wiener increment(shocks)

Note: If the fund S(t) follows a geometric Brownian motion, then the cumulative return sequence follows a Brownian motion.

We would like to study $MDD(\mu, \sigma, T)$.

DD(t) is a Reflected Brownian Motion

Drawdown at time t is a stochastic process.



DD(t) is reflecting at 0, i.e., DD(t) is a reflected Brownian motion.

$$dDD(t) = \begin{cases} -dX(t) & DD(t) > 0\\ \max\{0, -dX(t)\} & DD(t) = 0 \end{cases}$$

Maximum of a Reflected Brownian Motion

 $MDD(T) = \sup_{t \in [0,T]} DD(t)$ h DD(t) $\tau = \text{stopping time}$ $\tau = \text{stopping time}$

 $\begin{aligned} f_{\tau}(t,h|\mu,\sigma) = & \text{stopping time density} \\ & \text{[Dominé; 1996]} \\ G_{H}(h|\mu,\sigma,T) = P[MDD(\mu,\sigma,T) \geq h] = \int_{0}^{T} dt \ f_{\tau}(t,h|-\mu,\sigma) \\ & \text{[Magdon-Ismail, Atiya, Pratap and Abu-Mostafa; 2004]} \end{aligned}$

Moments of G_H

$$E[MDD(\mu,\sigma,T)] = \int_0^\infty dh \ G_H(h|\mu,\sigma,T)$$

Expected $MDD(\mu, \sigma, T)$

Theorem:
$$E[MDD(\mu, \sigma, T)] = \begin{cases} \frac{2\sigma^2}{\mu} Q_p\left(\frac{\mu^2 T}{2\sigma^2}\right) & \mu > 0\\ \sqrt{\frac{\pi}{2}}\sigma\sqrt{T} & \mu = 0\\ \frac{2\sigma^2}{\mu} Q_n\left(\frac{\mu^2 T}{2\sigma^2}\right) & \mu < 0 \end{cases}$$

 Q_p and Q_n are "universal" functions. - Only need to be computed once!

The Universal Q_p and Q_n

Bad news: Q_p and Q_n are integral series:

$$Q_p(x) = \int_0^\infty du \left[e^{-u} \sum_{n=1}^\infty \frac{\sin^3(\theta_n) \left(1 - e^{-\frac{x}{\cos^2(\theta_n)}}\right)}{\theta_n - \cos(\theta_n) \sin(\theta_n)} + e^{-\frac{u}{\tanh(u)}} \sinh(u) \left(1 - e^{-\frac{x}{\cosh^2(u)}}\right) \right]$$

 θ_n are positive eigen solutions of $tan(\theta_n) = \frac{\theta_n}{u}$.

$$Q_n(x) = -\int_0^\infty du \ e^u \sum_{n=1}^\infty \frac{\sin^3(\theta_n) \left(1 - e^{-\frac{x}{\cos^2(\theta_n)}}\right)}{\theta_n - \cos(\theta_n) \sin(\theta_n)}$$

 θ_n are positive eigen solutions of $tan(\theta_n) = -\frac{\theta_n}{u}$.

Good news: Only have to be computed once.

More Good News: Asymptotic Behavior

Most trading desks are interested in the long term.

Theorem:

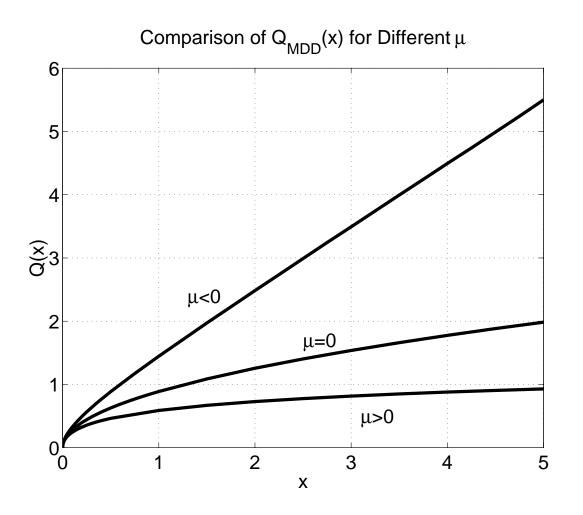
$$E[MDD]^{T \to \infty} \begin{cases} \frac{\sigma^2}{\mu} \left(0.63519 + \frac{1}{2} \log T + \log \frac{\mu}{\sigma} \right) & \mu > 0 \\\\ \sqrt{\frac{\pi}{2}} \sigma \sqrt{T} & \mu = 0 \\\\ \mu T + \frac{\sigma^2}{\mu} & \mu < 0 \end{cases}$$

Phase Transitions: Three different types of behavior:

 $\log T, \sqrt{T}, T$

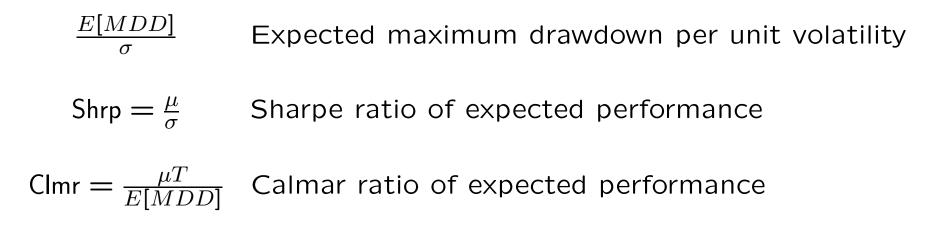
depending on the regime of μ .

Behavior of $Q_{MDD}(x)$



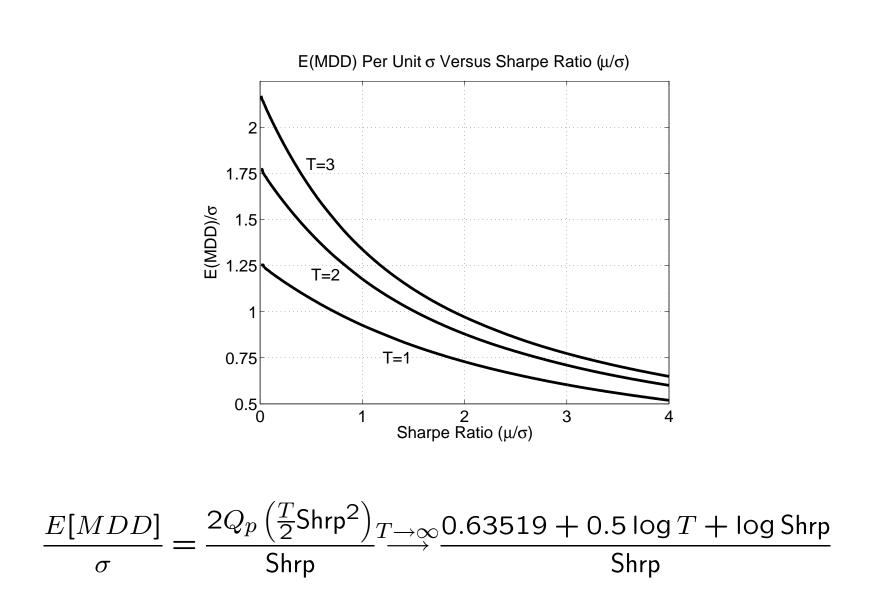
http://www.cs.rpi.edu/~magdon/data/Qfunctions.html

Some Useful Statistics

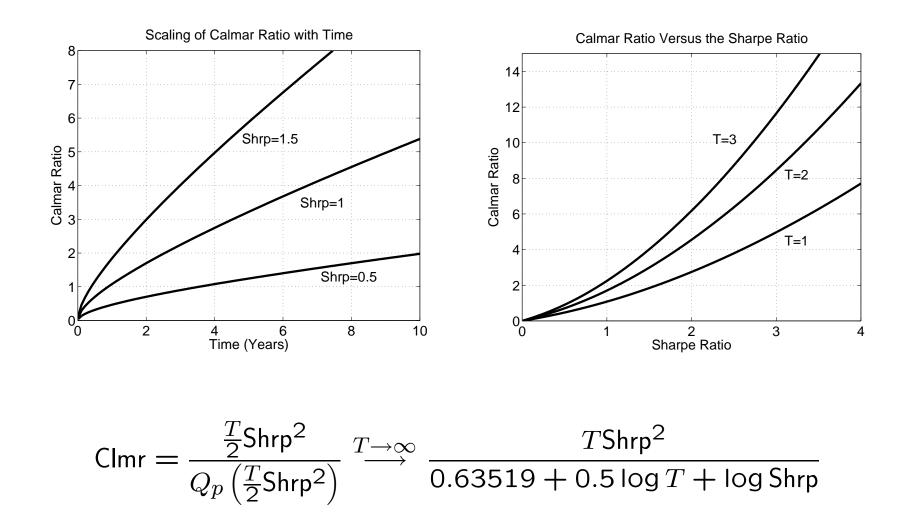


From now on, $\mu > 0$.

MDD vs. Shrp



Calmar vs. Sharpe



Note: Clmr is monotonic in Shrp.

Part II:

Scaling Laws

Recap

$$Calmar(T) = \frac{Return over [0, T]}{MDD over [0, T]} \approx \frac{\mu T}{E[MDD]} = Clmr$$

Given two funds,

$$\Pi_1 : \mu_1, \sigma_1, T_1, MDD_1, CImr_1 = \frac{\mu_1 T_1}{MDD_1}.$$

$$\Pi_2$$
: $\mu_2, \sigma_2, T_2, MDD_2, CImr_2 = \frac{\mu_2 T_2}{MDD_2}.$

How to compare $CImr_1$ and $CImr_2$?

Normalized Calmar Ratio I

Normalize the ratios to a reference time τ , for example $\tau = 1$ yr.

We know how to scale return over $[0, T_1]$,

$$\mu_1 T_1 \longrightarrow \mu_1 \tau = \mu_1 T_1 \cdot \frac{\tau}{T_1}$$

We can scale $MDD([0,T_1]) \rightarrow MDD([0,\tau])$ using proportion,

 $\frac{E[MDD([0,\tau])]}{E[MDD([0,T_1])]} = \frac{MDD([0,\tau])}{MDD([0,T_1])}$

Normalized Calmar Ratio II

$$\overline{Calmar}_{1}(\tau) = \frac{\operatorname{return}([0,\tau])}{MDD([0,\tau])}$$
$$= \underbrace{\frac{\mu_{1}T_{1}}{MDD([0,T_{1}])}}_{Calmar_{1}(T_{1})} \cdot \underbrace{\frac{\tau}{T_{1}} \cdot \frac{E[MDD([0,T_{1}])]}{E[MDD([0,\tau])]}}_{\gamma_{\tau}}$$

$$\overline{Calmar}_{1}(\tau) = \gamma_{\tau}(T_{1}, \mathsf{Shrp}_{1}) \times Calmar_{1}(T_{1}),$$
$$\gamma_{\tau}(T_{1}, \mathsf{Shrp}_{1}) = \frac{\frac{1}{T_{1}}Q_{p}(\frac{T_{1}}{2}\mathsf{Shrp}_{1}^{2})}{\frac{1}{\tau}Q_{p}(\frac{\tau}{2}\mathsf{Shrp}_{1}^{2})}$$

Example – Revisited

Fund	μ (%)	$\sigma(\%)$	max. DD(%)	T (yrs)	Calmar	Calmar
Π1	25	10	-5	1	5	5
П2	30	10	$-7\frac{1}{2}$	1.5	6	4.41
П ₃	25	12.5	$-8\frac{1}{3}$	2	6	3.62

(normalized to $\tau = 1$ yr.)

$$\Pi_1 > \Pi_2 > \Pi_3$$

$\tau\text{-}\mathsf{Relative}\ \mathsf{Strength}$

Fix a reference time τ .

$$\beta_{\tau}(\Pi_1|\Pi_2) = \frac{\overline{Calmar}_1(\tau)}{\overline{Calmar}_2(\tau)}.$$

– Relative normalized Calmar ratio of Π_1 with respect to Π_2 .

– May depend on τ .

Relative Strength

Consider the long horizon, $au
ightarrow \infty$,

$$\beta(\Pi_1|\Pi_2) = \lim_{\tau \to \infty} \beta_\tau(\Pi_1|\Pi_2)$$

– The limit exists.

$$relative \ strength = \beta(\Pi_1|\Pi_2) = \frac{Calmar_1(T_1)}{Calmar_2(T_2)} \times \frac{\frac{1}{T_1}Q_p(\frac{T_1}{2}\mathsf{Shrp}_1^2)}{\frac{1}{T_2}Q_p(\frac{T_2}{2}\mathsf{Shrp}_2^2)}$$
$$\Pi_1 \succeq \Pi_2 \iff \beta(\Pi_1|\Pi_2) \ge 1$$

Example – Re-Revisited

	Fund	μ (%)	$\sigma(\%)$	max. DD(%)	T (yrs)	eta
-	Π_1	25	10	-5	1	1.00
	П2	30	10	$-7\frac{1}{2}$	1.5	0.97
	П3	25	12.5	$-8\frac{1}{3}$	2	0.64

(relative strengths w.r.t Π_1 .)

$$\Pi_1 > \Pi_2 > \Pi_3$$

Properties of Relative Strength

Complete:
$$\beta(\Pi_1|\Pi_2) = \frac{1}{\beta(\Pi_2|\Pi_1)}$$

 $\Pi_1 \succeq \Pi_2 \text{ or } \Pi_2 \succeq \Pi_1$

Transitivity: $\beta(\Pi_1|\Pi_3) = \beta(\Pi_1|\Pi_2)\beta(\Pi_2|\Pi_3)$

$$\Pi_1 \succeq \Pi_2 \text{ and } \Pi_2 \succeq \Pi_3 \implies \Pi_1 \succeq \Pi_3$$

Independent of Reference instrument: $\beta(\Pi_1|\Pi_2) = \frac{\beta(\Pi_1|\Pi_3)}{\beta(\Pi_2|\Pi_3)}$

$$\beta(\Pi_1|\Pi_3) \geq \beta(\Pi_2|\Pi_3) \implies \Pi_1 \succeq \Pi_2$$

i.e., the relative strength defines a **total order**.

Real Data*

Fund	μ (%)	$\sigma(\%)$	T(yrs)	MDD	Calmar	E[MDD]	Calmar	$oldsymbol{eta}$
<i>S&P</i> 500	10.04	15.48	24.25	46.28	5.261	44.56	0.6104	1
FTSE100	7.01	16.66	19.83	48.52	2.865	55.54	0.4395	0.5003
NASDAQ	11.20	24.38	19.42	75.04	2.899	77.87	0.4402	0.5407
DCM	15.65	5.78	3.08	3.11	15.50	4.770	6.541	27.76
NLT	3.35	16.03	3.08	25.40	0.4062	31.35	0.2202	0.1331
OIC	17.19	4.52	1.16	0.42	47.48	2.493	42.31	212.0
TGF	8.48	9.83	4.58	8.11	4.789	15.84	1.752	3.589

DCM=Diamond Capital Management; NLT=Non-Linear Technologies; OIC=Olsen Investment Corporation; TGF=Tradewinds Global Fund.

- Normalized Calmar ratio is to $\tau = 1$ yr.
- Relative strength index β is computed w.r.t. S&P500.

*International Advisory Services Group http://iasg.pertrac2000.com/mainframe.asp

Discussion

- 1. Studied MDD for a Brownian motion.
 - geometric Brownian?
- 2. We now have scaling laws for MDD and Sterling-type ratios.
- 3. Portfolio opt. to maximize Calmar?

Since Clmr is monotonic in Shrp, optimization of Shrp implies optimization of Clmr.

Advertisement:

[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004] [Magdon-Ismail, Atiya; 2004 submitted]

http://www.cs.rpi.edu/~magdon

Thank You!

Advertisement:

[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004] [Magdon-Ismail, Atiya; 2004 submitted]

 $http://www.cs.rpi.edu/{\sim}magdon$

References

- [1] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1997.
- [2] E. Acar and S. James, *Maximum loss and maximum drawdown in financial markets*. Int. Conference on Forecasting Financial Markets, London, UK, 1997.
- [3] **D. Sornette**, *Why Do Stock Markets Crash: Critical Events in Complex Financial Systems.* Princeton University Press, 2002.
- [4] Burghardt, G., Duncan, R. and L. Liu, *Deciphering drawdown*. Risk magazine, Risk management for investors, September, S16-S20, 2003.
- [5] **D. Harding, G. Nakou, and A. Nejjar**, *The pros and cons of drawdown as a statistical measure for risk in investments*. AIMA Journal, pp. 16-17, April 2003.
- [6] Chekhlov, A., Uryasev, S., and M. Zabarankin, Drawdown Measure in Portfolio Optimization. Research Report 2003-15. ISE Dept., University of Florida, September 2003.
- [7] R. Douady, A. Shiryaev, and M. Yor, On the probability characteristics of downfalls in a standard Brownian motion. SIAM, Theory Probability Appl., Vol 44, pp. 29-38, 2000.
- [8] **M. Dominé** First passage time distribution of a Wiener process with drift concerning two elastic barries. Journal of Applied Probability, DD:164–175, 1996.
- [9] M. Magdon-Ismail, A. Atiya, A. Pratap and Y. Abu-Mostafa, On the Maximum Drawdown of a Brownian Motion. Journal of Applied Probability, Volume 41, Number 1, 2004.