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Motivation




Example

Fund | u(%) | (%) | max. DD(%) | T (yrs)
My 25 10 —5 1
M, | 30 | 10 ~73 1.5
M 25 | 12.5 —83 2

Calmar Ratio =

Sterling Ratio =

Return over [0, T]

max. DD over [0,T]

Return over [0, T]

max. DD over [0,T] — 10%

Which fund is best?




T he Complication

e 1 and o are annualized. The max. drawdown is computed over a
given time period.

e Problem: funds have statistics over different length time intervals.

How do we annualize MDD?

Why?



Common Practice

Compare funds over T' = 3 vyrs.

Artificial:
— Wasteful of useful data.
— 3 years data may not be available.

— Easily available data does not generally quote the MDD for 3 years.



vVT-Rule for Sharpe Ratio
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Similar scaling laws for Sterling-type Ratios?

Part I.
Analysis of the Maximum Drawdown.

Part II:
Application to Scaling Laws.



Part I:

Analysis of Maximum Drawdown




The Drawdown (DD)

The DD (current loss) is the loss from the peak to the current value.

X (t) is the cumulative return curve.

DD(T)

X (1)

DD(T) = sup. X(s) — X(T)



Distribution of DD(T)

e Since DD(T) = max over [0,T]—X(T), the full distribution of DD(T)
can be obtained from the joint distribution of the max and the close.

e Joint distribution can be obtained in closed form for various stochastic
processes (see for example [Karatzas and Shreve, 1997])



The Maximum Drawdown (M DD)

The MDD is the maximum loss incurred from a peak to a bottom.

X ()

MDD(T)

MDD(T) = sup DD(t)
te[0,T1]

— DD is an extremum.
— MDD is an extremum of an extremum.
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Sampling of Prior Work

— Previous work on the the MDD is mostly empirical or Monte-Carlo.
e [Acar and James; 1997]
e [Sornette; 2002]
e [Burghardt, Duncan and Liu; 2003]
e [Harding, Nakou and Nejjar; 2003]
e [Chekhlov, Uryasev and Zabarankin; 2003]

— T he only analytical approach is for a Brownian motion with zero drift,
[Douady, Shiryaev and Yor; 2000].
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Setup

X (t) is an (arithmetic) Brownian motion:

dX (t) = pdt + odW (t) 0<t<l<T
[ = average return per unit time (drift)
o = std. dev. of the returns per unit time (volatility)
dW (t) = Wiener increment (shocks)

Note: If the fund S(t) follows a geometric Brownian motion, then the
cumulative return sequence follows a Brownian motion.

We would like to study MDD (u,o,T).
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DD(t) is a Reflected Brownian Motion

Drawdown at time t is a stochastic process.

-
‘

X(t) DD(t)

[
t t+A ' t t+A

DD(t) is reflecting at 0, i.e., DD(t) is a reflected Brownian motion.

—dX (t) DD(t) > 0

aDD() = {max{o, —dX(t)} DD(t) = 0.
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Maximum of a Reflected Brownian Motion

DD(t)

MDD(T) = sup DD(t)

te[0,7T]

----------- ] -Absorblng Barrler

= Reflecting Barrier

fr(t, h|u, c)=stopping time density

[Dominé; 1996]

T=stopping time

T
Gr(hlp,,T) = PIMDD(p,0,T) > h] = [dt f-(t,h| — p, o)
0

[Magdon-Ismail, Atiya, Pratap and Abu-Mostafa; 2004]
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Moments of Gy

oo
BIMDD(u,0,T)) = [~ dh Gp(hlu, 0, T)

15



Expected MDD(u,o,T)

Theorem: E[MDD(u,0,T)] = { /50T uw=~0

Qp and Qn are “universal” functions.
— Only need to be computed oncel
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The Universal ), and Qn

Bad news: @, and @y are integral series:

0.}

Qu(a) = [ du

0

0n are positive eigen solutions of tan(6y) =

0, are positive eigen solutions of tan(6,) = —22.

s Sin3(6,) <1 — ecos2(_9n)>
© Z 0,, — cos(6,)sin(6,) T

n=1

e mnmsinh(w) <1 — eCOSh2(u))

0

n
U

oo sin3(6y) (1—e_C052(9n)>

=1

Qn(z) = —/du e® Z 0, —cos(0y)sin(6,)
0 n

On

(7

Good news: Only have to be computed once.
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More Good News: Asymptotic Behavior

Most trading desks are interested in the long term.

‘Theorem:
( +2
2~ (0.63519 + $log T +log4) >0
E[MDD]' =% [To\/T =0
2
M+ 2 p<0

Phase Transitions: Three different types of behavior:
logT, VT, T

depending on the regime of wu.
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Behavior of QMDD(ZU)

Comparison of Q

MDD(X) for Different p

http://www.cs.rpi.

edu/~magdon/data/Qfunctions.html
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Some Useful Statistics

E[MUDD] Expected maximum drawdown per unit volatility
Shrp = g Sharpe ratio of expected performance
— _ uT i
Clmr = E[MDD] Calmar ratio of expected performance

From now on, u > 0.

20



E[MDD]  2Qp (%ShrpQ)TﬁQoo.63519 + 0.5109 T + log Shrp

o

MDD vs. Shrp

E(MDD) Per Unit o Versus Sharpe Ratio (/o)

E(MDD)/o

Sharpe Ratio (u/o)

Shrp Shrp
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Calmar vs. Sharpe

Scaling of Calmar Ratio with Time Calmar Ratio Versus the Sharpe Ratio

Calmar Ratio
A o
Calmar Ratio

w
T

0 2 4 6 8 10
Time (Years)

Sharpe Ratio

%Shrpz T—00 TShrp?
Qp (5Shrp?) 0.63519 + 0.5 log T + log Shrp

Clmr =

Note: Clmr is monotonic in Shrp.
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Part II:

Scaling Laws
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Recap

Return over [0,7T] uT

Calmar(T) = ~
MDD over [0,T] ~ E[MDD]

Given two funds,

: _ T
|_|1 . /L1,0'1,T1,MDD1,C|mr1 — ]\bel%l

: _ T
|_|2 . ,LLQ,O‘Q,TQ,MDDQ,GmrQ — ]\ZLQDDQQ

How to compare Clmry and Clmry?

= Clmr
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Normalized Calmar Ratio I

Normalize the ratios to a reference time 7, for example =1 vyr.

We know how to scale return over [0, Tq],

-
p1ly — p17 = p1dy - —
17

We can scale MDD([0,T1]) — MDD([O,7]) using proportion,

E[MDD([0,7])] _ MDD([0,1])
EMDD([0,T1])]  MDD([0,T1])
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Normalized Calmar Ratio 11

return([0, 7])

Calmar1(rt) = MDD([0,7])
_ wmn + BMDD([0,Ty))
MDD([0,Th]) Ty E[MDD(O, D]
Calmarq(Ty) T

Calmary(7) = v+(T41, Shrpy) x Calmary (1Y),

T%Qp(%smp%)

vr (T4, Shrpy) = =
' %Qp(jShrP%)
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Example — Revisited

Fund | u(%) | 0(%) | max. DD(%) | T (yrs) | Calmar | Calmar
Ny | 25 | 10 -5 1 5 5
Ny | 30 | 10 ~73 1.5 6 4.41
Nz | 25 | 12.5 —8% 2 6 3.62

(normalized to 7 =1 yr.)

[y > Ty >Tl3
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T-Relative Strength

Fix a reference time .

Calmarq(7)

ﬁT(I_I1|I_I2) —

Calmaro (1)

— Relative normalized Calmar ratio of 1y with respect to [15.

— May depend on T.
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Relative Strength

Consider the long horizon, 7 — oo,

B(M1|N2) = lim B-(M1|M>)

T—00

— The limit exists.

relative strength = 3(Mq|My) =

T
Calmarq(17) T%Qp(%ShrP%)

X
Calmary(1>) T%Q;;(%Shrp%)

My =My < p(N1|M2) > 1
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Example — Re-Revisited

Fund | u(%) | o(%) | max. DD(%) | T (yrs) 16
Ny | 25 | 10 -5 1 |1.00
Ny | 30 | 10 ~73 1.5 |0.97
Ny | 25 | 12.5 —8% 2 |0.64

(relative strengths w.r.t Mq.)

[y > Ty >Tl3
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Properties of Relative Strength

Complete: §(M1[M2) = 5(|‘|21|I‘I1)

|_|1E|_|20r|_|2t|_|1

Transitivity: ﬁ(ﬂ1||_|3) = ﬁ(ﬂ1||_|2)ﬁ(|_|2||_|3)

[y = Mo and Ny > N3 = T17 =~ I3

__ B(MNq|Ngz)

Independent of Reference instrument: F(M1|My) = B(T1,[M2)

B(M1|M3) > B(M2|M3) == T = My

i.e., the relative strength defines a total order.
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Real Data*

Fund w(%) | 0(%) | T (yrs) | MDD | Calmar | E[MDD] | Calmar G
S& P500 10.04 | 15.48 | 24.25 | 46.28 5.261 44.56 0.6104 1
FTSE100 | 7.01 16.66 | 19.83 | 48.52 2.865 55.54 0.4395 | 0.5003
NASDAQ | 11.20 | 24.38 | 19.42 | 75.04 2.899 77.87 0.4402 | 0.5407
DCM 15.65 | 5.78 3.08 3.11 15.50 4.770 6.541 27.76
NLT 3.35 | 16.03 3.08 25.40 | 0.4062 31.35 0.2202 | 0.1331
oIC 17.19 | 4.52 1.16 0.42 47.48 2.493 42.31 212.0
TGF 8.48 9.83 4.58 8.11 4.789 15.84 1.752 3.589

DCM=Diamond Capital Management;
NLT=Non-Linear Technologies;

O1IC=0Isen Investment Corporation;

TGF=Tradewinds Global Fund.

— Normalized Calmar ratio is to = =1 yr.
— Relative strength index g is computed w.r.t. S&P500.

*International Advisory Services Group http://iasg.pertrac2000.com/mainframe.asp
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Discussion

1. Studied MDD for a Brownian motion.
— geometric Brownian?

2. We now have scaling laws for MDD and Sterling-type ratios.

3. Portfolio opt. to maximize Calmar?

Since Clmr is monotonic in Shrp, optimization of
Shrp implies optimization of Clmr.

Advertisement:
[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004]
[Magdon-Ismail, Atiya; 2004 submitted]
http://www.cs.rpi.edu/~magdon
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T hank Youl

Advertisement:
[Magdon-Ismail, Atiya, Pratap, Abu-Mostafa; 2004]
[Magdon-Ismail, Atiya; 2004 submitted]
http://www.cs.rpi.edu/~magdon
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